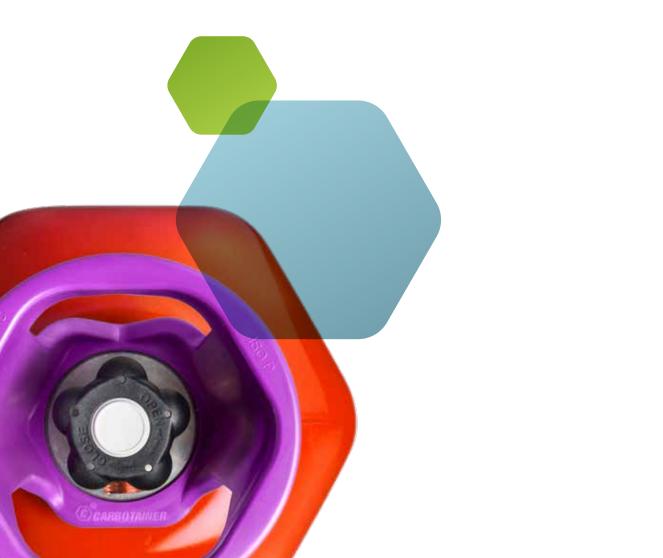
A STUDY ON THE REDUCTION OF THE CARBON FOOTPRINT IN THE USE OF PRESSURE GAS CYLINDERS

A comparison between the impact of WP 300 bars steel and smart carbon cylinders

Hydrogen / Helium



A STUDY ON THE REDUCTION OF THE CARBON FOOTPRINT IN THE USE OF PRESSURE GAS CYLINDERS

A comparison between the impact of WP 300 bars steel and smart carbon cylinders

Hydrogen / Helium

1 Introduction	3
2 Goals and scope of the study	4
3 What is the carbon footprint?	5
4 Factors to consider	6
4.1 Purchase of raw materials	7
4.2 Manufacturing process	8
4.3 Transportation	10
4.4 Recycling	12
5 Reduction of the carbon footprint with our SCC cylinder	12
6 Conclusions	13
7 Bibliography	14

1. INTRODUCTION

This document presents the comparative study of greenhouse gases (GHG) emissions derived from the raw material production, manufacturing and transportation of the steel and the our smart carbon cylinder (from now on called SCC cylinder) for pressurized gases, such as hydrogen, helium, nitrogen, oxygen, argon and its mixes, etc.

Nowadays there is a global commitment to fight against climate change, which means a double challenge:

• Mitigation through the development of policies, technologies and measures that allow.

- On the one hand, to limit and reduce the emissions of greenhouse gases.
- On the other hand, to improve the capacity of gas absorption by the terrain.

• Adaptation, that is, anticipating the adverse effects of climate change and taking the appropriate measures to avoid or minimize the damage they may cause, adapting to the consequences that may come.

The Carbon Footprint could be defined as an indicator that allows us to numerically value the amount of greenhouse gas emissions attributable to any human activity.

Overcoming this double challenge requires a new approach to the manufacturing procedures: our present model leads to either fragile systems or with a significant climatic and environmental impact. This effort towards a new productive model will open up new opportunities, such as the development of systems with low inputs or a wider use of renewable energies, which will support a new low-carbon economy.

So the Carbon Footprint could be defined as an indicator that allows us to numerically value the amount of greenhouse gas emissions attributable to any human activity. It is expressed in mass (grams, kilograms, tons...) of CO_2 equivalent. The CO_2 equivalent is considered as a unit that allows us to use a single reference to refer to all greenhouse gases through its Global Warming Potential. The global warming potential of a gas (GWP) reflects its relative capacity to increase the greenhouse effect compared to that of Carbon Dioxide.

2. GOALS AND SCOPE OF THE STUDY

OBJECTIVES OF ANALYSIS

Calculate the GHG emissions of the process of extraction of the required raw material for the manufacture of both steel and SCC cylinders.

Calculate the GHG emissions in the manufacturing process of both steel and SCC cylinders.

Calculate the GHG emissions throughout the life cycle of both steel and SCC cylinders.

Explain why the use of SCC cylinders is truly a positive contribution to the objectives of energyefficiency and climate protection.

3. WHAT IS THE CARBON FOOTPRINT?

The carbon footprint is the addition of all CO₂ emissions directly or indirectly caused by humans on the environment. It is measured from the extraction of raw materials to our daily habits, such as what means of transport we use or what energy consumption we make.

4. FACTORS TO CONSIDER

THE FACTORS TO TAKE INTO ACCOUNT FOR THIS CALCULATION ARE:

THE RAW MATERIALS THAT GENERATE CO₂ EMISSIONS INTO THE ATMOSPHERE DURING THEIR EXTRACTION

THE TRANSFORMATION OF THESE RAW MATERIALS TO OBTAIN THE FINAL PRODUCT

TRANSPORTATION

RECYCLING

4.1 EXTRACTION OF RAW MATERIALS

Following you will find a table of emissions of CO_2 Kg in the extraction of raw materials needed to manufacture WP 300 bars steel and and smart carbon cylinders.

MATERIALS	CARBON FOOTPRINT
1 Kg of ROUGH ALUMINUM	1.7 Kg of CO ₂
1 Kg of CARBON FIBRE	12.5 Kg of CO ₂
1 Kg of POLYURETHANE	3 Kg of CO ₂
1 Kg of EPOXY RESIN	6.7 Kg of CO ₂
1 Kg of UNPROTECTED POLYPROPYLENE	1.34 Kg of CO ₂
1 Kg of ROUGH STEEL	2 Kg of CO ₂

The raw material needed to manufacture a 50-liter steel cylinder weighing 68.5 Kg, as well as its carbon footprint, is:

MATERIALS	Kg MATERIALS	CARBON FOOTPRINT
ROUGH STEEL	68.5	137 Kg of CO ₂
TOTAL	68.5	137 Kg of CO ₂

The raw materials needed to manufacture a 50-liter carbon fibre cylinder weighing 25 Kg are:

MATERIALS	Kg MATERIALS	CARBON FOOTPRINT
ROUGH ALUMINIUM	10	17.00 Kg of CO ₂
CARBON FIBRE	7.1	88.75 Kg of CO ₂
POLYUTETHANE	2	6.00 Kg of CO ₂
EPOXY RESIN	3.4	22.78 Kg of CO ₂
POLYPROPYLENE	2.5	3.35 Kg of CO ₂
TOTAL	25	137.88 Kg of CO ₂

4.2 MANUFACTURING PROCESS

After accounting for the carbon footprint required to obtain the raw materials for the manufacture of these cylinders, we must also take into account the treatment and moulding of the raw material for the manufacturing of each cylinder. To test these processes we need to find the calorific value of each industrial process.

The data to consider are: Kg of the product, melting temperature and specific heat of the material. With these data we can obtain the calorific power needed to mould the material.

To obtain the calorific power needed, we need to use a fuel such as propane. We have estimated that in the process we are going to have a 40 % loss (reduction of calorific power) in the propane.

Required data from all raw materials:

	MELTING TEMP.	KILOGRAMS	SPECIFIC HEAT J / KG ² C
ALUMINIUM	660	10	897
CARBON FIBRE	1 500	7.1	711
POLYPROPYLENE	220	2.5	1 880
STEEL	1 500	68.5	2 000
	PROPANE	CALORIFIC POWER	CARBON FOOTPRINT
	1 Kg	11 082 Kcal/Kg	2.94 Kg/CO ₂

In the following table, we show the calorific value necessary for the treatment of both types of cylinders:

	B50 CYLINDERS				M x Ce x	(T2-T1)
SCC CYLINDER	KILOGRAMS	SPECIFIC HEAT	ROOM TEMP.	MELTING TEMP.	Q (JOULES)	Q (Kcal)
ALUMINIUM	10	897	25	660	5 695 950	1 361.36
CARBON FIBRE	7.1	711	25	1 500	7 445 947	1 779.62
POLYPROPYLENE	2.5	1880	25	220	916 500	219.05
TOTAL SCC						3 360.03
STEEL CYLINDER	KILOGRAMS	SPECIFIC HEAT	ROOM TEMP.	MELTING TEMP.	Q (JOULES)	Q (Kcal)
TOTAL STEEL	68.5	2 000	25	1 500	202 075 000	48 297.08

Summary table of the calorific value required

B50 CYLINDER660	Q (Kcal)
SCC CYLINDER 50 LITERS	3 360.03
STEEL CYLINDER 50 LITERS	48 297.08

A 40 % energy loss of the propane in the manufacturing process has been assessed. In the following table we may observe the Kg of propane needed in both types of cylinder to obtain the calorific value and therefore its carbon footprint.

The carbon footprint of 1 Kg of Propane Gas has an emission factor of 2.94 Kg CO₂

	MxCex ((T2-T1)	PROPANE Kg	PROPANE	EMISSION Kg CO ₂
	Q (JOULES)	Q (Kcal)	100%	140%	CO2
ALUMINUM	5 695 950	1 361.36	0.122	0.170	0.499
CARBON FIBRE	7 445 947	1 779.62	0.160	0.224	0.658
POLYPROPYLENE	916 500	219.05	0.019	0.026	0.076
TOTAL ALUMINUM		3 360.03	0.301	0.420	1.233
	MxCex	(T2-T1)	PROPANE Kg	PROPANE	EMISSION KG CO2
	Q (JOULES)	Q (Kcal)	100%	140%	CO2
TOTAL STEEL	202 075 000	48 297.08	4.358	6.101	17.93

Summary of the carbon footprint. Extraction raw material + manufacturing of cylinders:

SCC CYLINDER		
MATERIALS	Kg CO ₂	
EXTRACTION RAW MATERIALS	137.88	
MANUFACTURING OF SCC MATERIALS	1.23	
TOTAL	139.11 Kg CO ₂	

STEEL CYLINDER		
MATERIALS	KG CO ₂	
STEEL	137	
STEEL MANUFACTURING	17.93	
TOTAL	154.93 Kg CO ₂	

With these results it can be stated that the manufacture of a SCC cylinder produces 10.21% less CO_2 than the manufacture of a steel cylinder.

4.3 TRANSPORTATION

Let us check the savings in transportation using a 300 bars SCC cylinder versus a steel cylinder.

We take into account the following data:

- The CO, emissions considering an average value for transportation of goods by road is 50 gr. of CO, per Km and Ton of weight.
- We will consider a distance of 150 Km for our calculation.

CASE 1:

We will start by comparing the CO₂ footprint in the round trip of a single cylinder, in both cases.

Single Cylinder (14 Tn. Freight Truck) Delivery of a full cylinder with hydrogen + collection of an empty one back to the plant. **SINGLE STEEL CYLINDER**

Outbound trip full cylinder = 68.5 Kg +1.06 Kg = 69.56 Kg // 150 Km x 0.069 Tm x 50 gr. = 517.50 gr.

 CO_2 Inbound trip empty cylinder = 68.5 Kg // 150 Km x 0.068 Tm x 50 gr. = 510 gr. CO_2

Total 1 027 gr. of CO₂ = 1.027 Kg of CO₂ // Ratio CO₂ x Kg of gas delivered 1027/1.06 Kg = 968.86 gr. CO₂ SINGLE SCC CYLINDER

Outbound trip full cylinder = 25 +1.06 Kg = 26.06 Kg // 150 Km x 0.026 Tm x 50 gr. = 195 gr. CO₂

Inbound trip empty cylinder = 25 Kg // 150 Km x 0.025 Tm x 50 gr. = 187.50 gr. CO $_{2}$

Total 382.5 gr. of CO₂ = 0.3825 Kg of CO2 // Ratio CO₂ x Kg of gas delivered 382.50/1.06 Kg = 360.85 gr. CO₂

CON	ICLUSION:
	ANSPORTATION REDUCES CO ₂ EMISSIONS
B50 CYLINDER	REDUCES CO ₂
HYDROGEN	-62,75%
HELIUM	-62,36%

CASE 2:

Delivering a single cylinder is not frequent, so we will consider a more usual example: the delivery of a whole freight truck. Freight Truck 24 tons of payload (dimensions 13.40 x 2.50 m.)

USING STEEL CYLINDERS:

288 cylinders with cages, each cylinder contains 1.06 Kg of hydrogen

288 cylinders x 69.56 Kg + 24 cages x 130 Kg = 23 153 Kg

288 cylinders x 68.5 Kg + 24 cages x 130 Kg = 22 848 Kg

Total 48 001 Kg to deliver 305.28 Kg of product

Outbound trip full cylinder = 150 Km x 23.15 Tn x 50 gr. = 173 625 gr. CO₂

Inbound trip empty cylinder = 150 Km x 22.84 Tn x 50 gr. = 171 300 gr. CO_2

Total 344 925 gr. of CO2 // Ratio CO₂ x Kg of product 344 925 gr./305.28 Kg = 1 129.86 gr. CO₂

USING SCC CYLINDERS:

495 cylinders, 33 pallets of 15 cylinders each, each cylinder carries 1.06 Kg of hydrogen

495 cylinders x 26.06 Kg + 33 pallet x 25 Kg = 13 724 Kg

495 cylinders x 25 Kg + 33 pallet x 25 Kg = 13 200 Kg

Total 26 924 Kg to deliver 524 Kg of product

Outbound trip full cylinder = 150 Km x 13.72 Tn x 50 gr. = 102 900 gr. CO_2

Inbound trip empty cylinder = 150 Km x 13.2 Tn x 50 gr. = 99 000 gr. CO₂

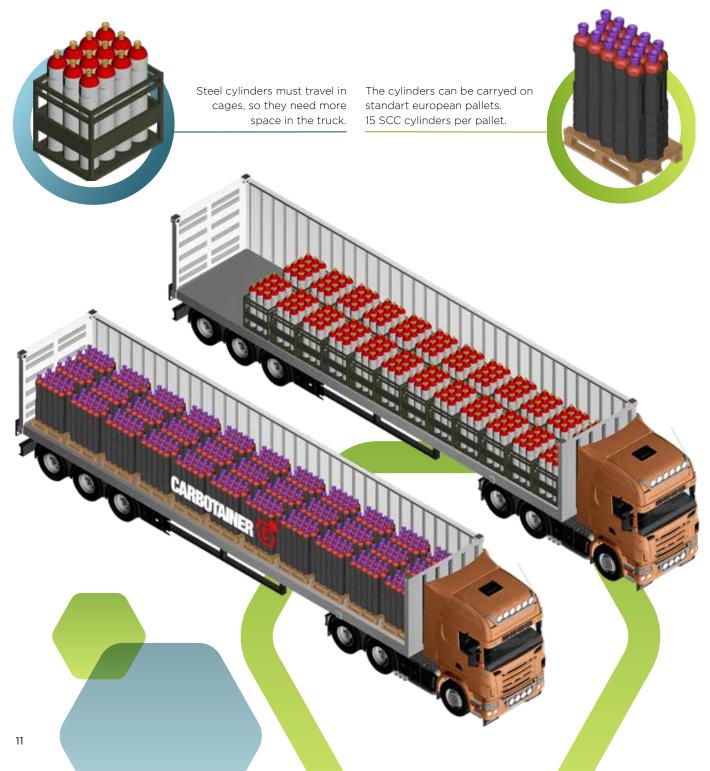
Total: 201 900 gr. of CO₂ // Ratio CO₂ x Kg of product 201 900 gr./ 524 Kg = 383.30 gr. CO₂

CONCLUSION:

USING SCC CYLINDERS FOR GAS TRANSPORTATION REDUCES CO₂ EMISSIONS BY A 65,89% COMPARED TO THE STEEL CYLINDER.

B50 CYLINDER	REDUCES CO ₂
HYDROGEN (1.02 Kg)	- <mark>65,89%</mark>
HELIUM (2.19 Kg)	-65,48%

LAYOUT OF CYLINDERS IN A 24 TN FREIGHT TRUCK


Weight is important, but let us consider dimensions and space too. A freight truck of 24 tons, dimensions of the cargo space: 13.4×2.50 meters.

USING STEEL CYLINDERS:

Transportation of these cylinders requires metal cages with dimensions of 850 x 1080 mm, each cage has a capacity of 12 cylinders. Each cage with the 12 cylinders filled with gas weighs 964.70 Kg. Considering that the maximum weight allowed by the freight truck is 24 Tons, only 24 cages (23 152 Kg) can be carried. Also, we must keep in mind the space, keeping the necessary distances in the freight truck cargo space, we may fit 2 rows of 15 cages in each, for a maximum of 30 cages (28 941 Kg). Due to this reason, the truck can only carry 24 cages.

USING SCC CYLINDERS:

Standard 800 x 1200 euro pallets are used, 15 cylinders fit in each pallet. Keeping the necessary distances, 33 pallets (495 SCC cylinders) fit in each cargo space. Each pallet with 15 filled cylinders weighs 415.90 Kg, that is, 33 filled pallets weigh 13 724 Kg.

4.4 RECYCLING

We must keep in mind that more **than 95% of all SCC materials can be recycled.** Aluminum is a totally recyclable material that does not lose its properties, moreover, recycling aluminum saves 95% of the energy needed to produce new aluminum. Polypropylene is 100% recyclable which makes it a versatile material in reprocessing, allowing us to obtain products that fulfill an equivalent functional promise to the initial application or giving them a greater impact destination.

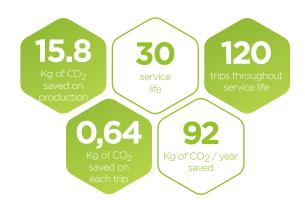
5. REDUCTION OF THE CARBON FOOTPRINT WITH THE SCC CYLINDER

HOW MUCH CO, CAN A TREE ABSORB?

It can be stated that figures vary between 10 Kg and 30 Kg of CO_2 per year. For calculation purposes, it is recommended to take 15 Kg of CO_2 as a reference.

SCC cylinder service life: 30 years

One 50-litres SCC cylinder has an average rotation of 4 times to the year, meaning it is filled, delivered and collected 4 times a year.


<u>1º In the manufacturing process there is a saving of:</u>

Steel Cylinder = 154.93 Kg of CO_2 BIC Cylinder = 139.11 Kg of CO_2 The difference is 15.82 Kg of CO_2 per cylinder.

2º In the transportation of a SCC cylinder:

Considering a service life of 30 years and a rotation of 4 times a year, 120 round trips are made in the life of each cylinder. On each round trip there is a saving of 0.64 Kg of CO_2 per cylinder So for 120 trips, the economy is: 0.64 Kg of $CO_2 \times 120 = 76.8$ Kg of CO_2

CONCLUSION: TOTAL SAVING OF CO₂= 15.82 KG + 76.8 KG = 92.62 KG OF CO₂. AS IF WE HAD SEEDED 6.1 TREES.

Using SCC cylinders implies a reduction of the carbon footprint equivalent to the seeding of more than six trees all over the life of each BIC cylinder.

6. CONCLUSIONS

After the present study and the analysis of the results, we can state that, although in the manufacturing process of the SCC the data are similar to those of the steel cylinder, there is a **significant reduction of 62.75% in the carbon footprint in the transportation process**, that grows up to 65.89% when considering the full load of a 24 Tn freight truck.

The reason for this economy are:

- Its lower weight, almost three times lighter than steel cylinders.
- Its hexagonal shape, which allows using pallets instead of cages, so we have more space to carry almost twice as many cylinders in a 24 Tn freight truck.

We may come to the conclusion that the "carbon balance" for smart carbon cylinders (SCC) shows that its use implies a **reduction of the carbon footprint equivalent to the seeding of more than six trees** all over the life of each SCC cylinder.

7. BIBLIOGRAPHY

• "Emission factors, carbon footprint register, compensation and projects of carbon dioxide absorption"

May 2017, Ministry of Environment of Spain, available at: https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/informacion-interes.aspx

• "Road Transportation Costs Observatory Report"

October 2017, Ministry of Infrastructure of Spain, available at: https://www.google.es/search?q=estudio+de+costes+de+mercancias+del+2017&oq=estudio+de+costes+de+mercancias+del+2017&aqs=chrome..69i57.10679j0j7&sourceid=chrome&ie=UTF-8

• "A guide for estimation of carbon dioxide absorption"

April 2015, Ministry of Agriculture of Spain, available at: https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/guia_pa_v2_tcm30-178911.pdf

CARBOTAINER S.L.

Pº Independencia, 8 dpdo. 2ª Planta | 50004 - Zaragoza (Spain) Telephone: 976 141 749

www.carbotainer.com info@carbotainer.es

